Liver, Kidney, and Thoracic Organ Transplantation Under FK 506

SATORU TODO, M.D., JOHN J. FUNG, M.D., PH.D., THOMAS E. STARZL, M.D., PH.D., ANDREAS TZAKIS, M.D., ANTHONY J. DEMETRIS, M.D., ROBERT KORMOS, M.D., ASHOK JAIN, M.D., MARIO ALESSIANI, M.D., SHUNICHI TAKAYA, M.D., and RON SHAPIRO, M.D.

The new immunosuppressive drug FK 506 was used from the outset with low doses of prednisone to treat 120 recipients of primary liver grafts and 20 more patients undergoing liver retransplantation. The patient survival rate after 2 to 8 months in the primary liver transplantation series is 93.3%, with original graft survival of 87.5%. Of the 20 patients in the hepatic retransplant series, 17 (85%) are living. Almost all of the surviving patients have good liver function. In addition 11 hearts, 2 double lungs, and a heart–lung have been transplanted under FK 506, with survival of all 14 patients. With all of the organ systems so far tested, including the kidney (which has been reported elsewhere), rejection usually has been controlled without additional drugs and with lower average steroid doses than in the past. Nephrotoxicity has been observed, but not to an alarming degree, and there has been a notable absence of hypertension. There is a suggestion that serum cholesterol may be lowered by FK 506, but this is unproved. Although the adverse reactions of FK 506 and the immunosuppressive mechanisms resemble those of cyclosporine, our preliminary observations suggest that FK 506 may have a more advantageous therapeutic index.

The new immunosuppressive drug FK 506 was introduced clinically in February 1989 to replace cyclosporine for liver recipients who had intractable rejection or drug toxicity. In March 1989, it was first used as primary therapy from the time of a cadaveric kidney transplantation. Between then and the beginning of February 1990, 140 liver and 36 kidney recipients had grafting procedures at the Presbyterian University and Children’s Hospital of Pittsburgh under therapy with FK 506 and prednisone from the time of transplantation. In addition 14 patients had transplantation of the heart, lungs, or heart–lung. The use of FK 506 for multiple-organ transplantation, pancreatic islet cell transplantation, and as a device to facilitate the recent development of a separate Veterans Administration program will be reported separately.

Supported by Research Grants from the Veterans Administration and Project Grant DK 29961 from the National Institutes of Health, Bethesda, Maryland.

Address reprint requests to Thomas E. Starzl, M.D., Ph.D., Department of Surgery, 3601 Fifth Ave., Falk Clinic, Pittsburgh, PA 15213.

Accepted for publication April 12, 1990.

From the Department of Surgery and Pathology, University Health Center of Pittsburgh, University of Pittsburgh, and the Veterans Administration Medical Center, Pittsburgh, Pennsylvania

Methods

Liver Transplantation

The 140 patients entered into the study between July 2, 1989 and February 4, 1990 were heterogenous in their indications for transplantation, degree of illness, and age. For analysis they were stratified into the 120 patients receiving their first liver (primary transplantation) and 20 who were receiving their second to sixth liver (retransplantation). Each main group was subdivided into adult (18 years or older) and pediatric (younger than 18 years) categories. The techniques of liver transplantation have been reviewed elsewhere.

Primary Liver Transplantation (120 Cases)

There were 105 adults and 15 infants and children (Table 1) who were given a total of 132 livers. The average adult age of 45 ± 11.5 (SD) years reflected both the aging population in our region and our nondiscriminatory policy toward older candidates; 13 (10.8%) of the 105 adults were 60 years or older. Nonalcoholic and alcoholic cirrhosis accounted for two thirds of the adult indications; 9 of these patients were B-virus (HBV) carriers. The technically ‘easier’ cholestatic diseases, which include primary biliary cirrhosis and sclerosing cholangitis, were only 27% of the total. There was a generally high degree of illness and urgency as this was defined by the current United Network for Organ Sharing (UNOS) stratification (Table 1): status 1, at home, functioning without nursing care; status 2, at home, not working and requiring professional nursing care; status 3, hospital bound; status 4, ICU bound; UNOstat, ICU bound on life support. Only three of the adult UNOstat patients had fulminant hepatic failure. Many of the patients with chronic liver disease had gravitated to the desperate UNOstat condition over a long period while they waited for a liver to become available.
TABLE 1. Clinical Features of Primary Liver Recipients

<table>
<thead>
<tr>
<th>Feature</th>
<th>Adult (≥18 years)</th>
<th>Pediatric (<18 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>105</td>
<td>15</td>
</tr>
<tr>
<td>Number of transplants</td>
<td>116</td>
<td>16</td>
</tr>
<tr>
<td>Age (years)*</td>
<td>45 ± 11.5 (18 to 69)</td>
<td>4.1 ± 4.8 (0.4 to 16)</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>58/47</td>
<td>9/6</td>
</tr>
<tr>
<td>Disease category: No. of cases (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonalcoholic cirrhosis†</td>
<td>42 (40)</td>
<td>Biliary atresia 8 (53.3)</td>
</tr>
<tr>
<td>Alcoholic cirrhosis</td>
<td>26 (24.7)</td>
<td>Cirrhosis 4 (26.7)</td>
</tr>
<tr>
<td>Cholestatic disease</td>
<td>28 (26.6)</td>
<td>Tumor 2 (13.3)</td>
</tr>
<tr>
<td>Tumor</td>
<td>3 (2.9)</td>
<td>Fulminant failure 1 (6.7)</td>
</tr>
<tr>
<td>Fulminant failure</td>
<td>3 (2.9)</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>3 (2.9)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>105 (100)</td>
<td>15 (100)</td>
</tr>
<tr>
<td>UNOS score: No. of cases (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25 (23.8)</td>
<td>5 (33.3)</td>
</tr>
<tr>
<td>3</td>
<td>39 (37.2)</td>
<td>5 (33.3)</td>
</tr>
<tr>
<td>4</td>
<td>14 (13.3)</td>
<td>3 (20.0)</td>
</tr>
<tr>
<td>UNOSTAT</td>
<td>27 (25.7)</td>
<td>2 (13.4)</td>
</tr>
</tbody>
</table>

* Thirteen patients were ≥ 60 years old; 8 were younger than 2 years old.

Biliary atresia was the native liver disease in 8 of the 15 pediatric recipients, with cirrhosis a distant second (Table 1). The youngest child was 4.5 months old. The average degree of urgency in these patients was less than in the adults.

Liver Retransplantation (20 Cases)

These 20 patients (15 adult and 5 pediatric) experienced failure of one to five previous grafts that had been in place for 2 days to 80 months under cocktail immunosuppression with cyclosporine and prednisone, with or without azathioprine and/or antilymphoid globulin (ALG) agents (Table 2). The main reasons for graft failure were chronic rejection and hepatic artery thrombosis (Table 2). Several of these patients were sent to Pittsburgh for salvage after having their first transplantation(s) at other centers.

TABLE 2. Circumstances of Liver Retransplantation (ReTX)

<table>
<thead>
<tr>
<th>Circumstance</th>
<th>Adult (≥18 years)</th>
<th>Pediatric (<18 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Number of transplants</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>Age (years)</td>
<td>45 ± 4.5 (21 to 64)</td>
<td>5.6 ± 6.5 (1 to 17)</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>7/8</td>
<td>2/3</td>
</tr>
<tr>
<td>Causes of ReTX:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rejection</td>
<td>8 (53.3)</td>
<td>5 (100)</td>
</tr>
<tr>
<td>HA thrombosis</td>
<td>4 (26.7)</td>
<td></td>
</tr>
<tr>
<td>Primary dysfunction</td>
<td>2 (13.3)</td>
<td></td>
</tr>
<tr>
<td>Recurrent HBV</td>
<td>1 (6.7)</td>
<td></td>
</tr>
<tr>
<td>Number of grafts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days from First graft</td>
<td>728 ± 862 (2 to 2435)</td>
<td>478 ± 278 (84 to 862)</td>
</tr>
<tr>
<td>Previous graft</td>
<td>460 ± 594 (2 to 2421)</td>
<td>475 ± 251 (84 to 862)</td>
</tr>
</tbody>
</table>

† Included 9 B-virus (HBV) carriers.

Treatment of the 20 patients required 23 grafts because additional retransplantation became necessary in three instances.

Thoracic Organ Transplantation

Heart transplantation. Between October 8, 1989 and February 14, 1990, heart transplantations were performed in eight adults (48 to 56 years) and three children (who were 11 months, 2.5 years, and 11 years old). The indications were idiopathic cardiomyopathy (n = 5), ischemic cardiomyopathy (n = 5), and congenital heart disease (n = 1). Four of the 11 patients needed preoperative mechanical assist device support and three more required inotropic drugs. The donor for a 52-year-old woman was her 48-year-old sister (one haplotype HLA match) who died of a stroke; special permission was obtained from UNOS to permit allocation outside of the normal priority list.

Lung or heart–lung transplantation. Two men with cystic fibrosis who were 34 and 27 years old had double-lung transplantation on October 13 and November 28, 1989, respectively. A 27-year-old woman with Eisenmenger complex had a heart–lung transplantation on October 20, 1989. She had minimal residual disability from a cerebrovascular accident several years earlier, which presumably was related to polycythemia.

Kidney Transplantation

Thirty-six kidney transplantations were performed between March 27, 1989 and January 4, 1990 and have been reported elsewhere. More than two thirds of these patients were not conventional kidney transplant recipients because of previous or concurrent transplantation of
the liver (n = 10) or heart (n = 1), positive cytotoxic cross-matches (n = 9), and other complicating factors that normally would have precluded renal transplant candidacy. Two (5.6%) of the patients died. Twenty-seven (75%) have good graft function (mean serum creatinine, 1.7 mg%) after 3 to 13 months follow-up (156 ± 52 [SD] days). In the present report, these cases were used for comparison of FK 506 doses, FK 506 plasma levels, and cholesterol concentrations with those of primary liver and thoracic organ recipients.

Immunosuppression

FK 506. Initial treatment is the same with all organ recipients and has been standardized as follows. Intravenous doses of 0.075 mg/kg infused during 4 hours are started in the operating room and repeated every 12 hours until oral intake is begun. The conversion from intravenous to oral doses of 0.15 mg/kg every 12 hours usually is overlapped for 1 day. Dose revisions are made on clinical grounds and guided by trough plasma levels of FK 506, which are measured with an enzyme immunoassay technique. Optimal 12-hour trough levels are thought to be in the 0.5 to 1.5 ng/mL range, but concentrations less than this may be adequate, and higher concentrations may be well tolerated. Most upward dose adjustments are responses to the break-through of rejection, combined with low plasma levels of FK 506. Downward dose adjustments usually are dictated by adverse drug reactions of which nephrotoxicity is the most common and useful for clinical management. Major nephrotoxicity implies serious overdosage but is quickly reversible.

Later, variations from this generic approach were dictated by the nature of the graft, the quality of graft function, and kidney function in nonrenal and renal recipients. Because the principal metabolism of FK 506 is by the liver, the doses were reduced after hepatic transplantation if the initial liver graft function was substandard. Under these circumstances, downward adjustments of FK 506 dosage were correlated with liver dysfunction, declining renal function, neurotoxic side effects, and the demonstration of supratherapeutic plasma levels of FK 506. These were documented as high as 25 ng/mL. The supreme value of monitoring plasma levels of FK 506 was in the liver recipients. In liver recipients upward adjustments of FK 506 dosage from the generic regimen were rarely made perioperatively and then only if there was unequivocal evidence of rejection. Protocol liver biopsies were obtained at 2 weeks and 2 months to help guide management.

An effort was made in recipients of thoracic organs to keep the FK 506 doses as high as possible. Perioperatively renal dysfunction necessitated temporary reduction of the intravenous doses in one half of the cases. This was most common when circulatory or pulmonary assist procedures had been in effect before operation. Later, changes in immunosuppression were based on the histologic findings in serial endomyocardial or lung biopsies and the results of bronchopulmonary lavage specimens. The initial response to a rejection was to increase the FK 506 dose if renal function was adequate. This approach permitted the double-lung recipients and the heart–lung recipient to be managed without maintenance steroids or any other adjuvant agent.

Kidney recipients were managed in the same general way as heart patients. Elevations of creatinine were evaluated with standard radiologic studies and kidney biopsies were obtained as needed to establish the differential diagnosis of rejection versus nephrotoxicity or ischemic injury. In such cases FK 506 doses were increased if there was evidence of rejection with little or no toxicity, or reduced if the biopsy did not show rejection.

Other drugs. All of the patients reported here, except for the lung and heart–lung recipients, also were given prednisone. In the first part of the experience, 1 g intravenous methylprednisolone was given to adults during operation, and a 5-day burst of methylprednisolone was begun at 200 mg on the first day and reduced daily in 40-mg steps. The doses were scaled down for infants and children. Beginning in late 1989, the intraoperative bolus and subsequent steroid cycle were omitted. Instead a daily dose was started of 20 methylprednisolone. Prednisone doses were reduced to 0 to 10 mg/day during the second to sixth post-transplantation weeks if there was no evidence of rejection.

Rejection episodes that were unresponsive to increasing the maintenance doses of FK 506 were treated with a single 1-g bolus of methylprednisolone or hydrocortisone in adults or with lesser quantities in children. If rejection persisted additional steroids were given, a 3- to 5-day course of 5 or 10 mg/day OKT3 was considered, and in a few cases azathioprine was added.

Tissue Matching

As would be expected with random matching, poor HLA compatibility was present with all of the extrarenal transplantations, except for the sister-to-sister heart transplantation. Efforts at matching in the renal cases were completely unsuccessful, despite considerable effort. Twelve (10%) of the 120 primary liver transplantations were performed, despite completely killing positive cytotoxic cross-matches. All but one of these recipients had a panel reactive antibody index (PRA) ≥ 40%. None of the thoracic transplant recipients had circulating cytotoxic antibodies.
Data Analysis

Patient and graft survival were recorded for each organ and actuarial survival was projected with Kaplan–Meier analyses. Data compilations were expressed as mean ± standard deviations (SD). Data from our recently reported FK 506-treated kidney recipients were used for comparisons of the FK 506 doses, blood levels, and cholesterol levels with those in recipients of other organs. Comparisons were made with a one-tailed student’s t test and X² test with continuity correction and were considered significant at p < 0.05.

For comparison of the present results with our previous liver transplantation experience, 400 consecutive primary transplant cases were studied, going back from November 8, 1988 to October 25, 1987. Then, as during the FK 506 study, all livers were preserved with University of Wisconsin (UW) solution. The historical controls had about the same adult and pediatric case representation as during the FK 506 study. Historical controls from November 1988 onward were not useful because so many of the later patients eventually were switched from cyclosporine to FK 506. In addition to patient and graft survival in all 400 cases, several other biochemical and treatment parameters were examined in smaller numbers that were determined by data availability.

Results

Primary Liver Transplantation

Patient and graft survival. One hundred twelve (93.3%) of the 120 patients are alive after 2 to 7.5 months. The patient (p < 0.0001) and graft (p < 0.0003) survival was superior to that in the historical controls (Fig. 1, top). This advantage was seen both in the adult (Fig. 1, middle) and pediatric cases (Fig. 1, bottom), although the numbers did not reach significance in the infants and children.

Rate of retransplantation. The diminished need for retransplantation at all times under FK 506 therapy is evident in Figure 1 and is documented in Table 3 for the first 60 days. Seven retransplantations (5.8%) were performed, an incidence that was almost one third of the 15% in the historical control group (p < 0.05). All of the usual causes of retransplantation shared in the improvement (Table 3). Also noteworthy was the absence of graft losses from viral infection.

The only FK 506-treated graft that was lost to rejection was in a highly sensitized patient who had a PRA of 100%, and completely killing positive antidonor cytotoxic crossmatches. This liver was not hyperacutely rejected (Fig. 2), but intense lymphocytic infiltration was found on biopsies 7 and 29 days after operation (Fig. 2). A second liver was transplanted after 40 days, also against positive cross-matches. This graft eventually provided normal function under intensified immunosuppression (Fig. 2).

TABLE 3. Causes of Retransplantation (RTx) Within 60 Days After Primary Liver Transplantation Under FK 506 Versus Historical Controls

<table>
<thead>
<tr>
<th></th>
<th>FK 506*</th>
<th>Cyclosporine</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (Starting)</td>
<td>120</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>N (RTx)</td>
<td>7 (5.8%)</td>
<td>60 (15%)</td>
<td><0.05</td>
</tr>
<tr>
<td>Reasons for RTx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rejection</td>
<td>1 (0.8%)</td>
<td>15 (3.8%)</td>
<td></td>
</tr>
<tr>
<td>Artery thrombosis</td>
<td>1 (0.8%)</td>
<td>9 (2.2%)</td>
<td></td>
</tr>
<tr>
<td>Primary dysfunction</td>
<td>5 (4.2%)</td>
<td>25 (6.2%)</td>
<td></td>
</tr>
<tr>
<td>Viral hepatitis</td>
<td>0</td>
<td>6 (1.5%)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>5 (1.3%)</td>
<td></td>
</tr>
</tbody>
</table>

Outcome of second transplantation: Five of the seven FK 506 patients are alive 3 to 5.5 months later. One of the patients who died received a total of three livers. The 90-day survival rate after retransplantation in the cyclosporine group was 34 of 60 patients.

* The patient and graft survival curves up to and beyond 60 days after primary transplantation are shown in Figure 1. Two more patients required retransplantation after 60 days in the FK 506 series, and both patients survived after receipt of their second graft and in one case a subsequent third graft.

Fig. 1. Patient (O) and graft (●) survival rates in 120 cases under FK 506 therapy (——) and in 400 historical controls (—–) after primary liver transplantation in all patients (upper), adults (middle), and pediatric recipients (lower).
but at the cost of nephrotoxicity from high-dose FK 506 therapy.

It may be significant that three of the retransplantations within 60 days in the FK 506 series were in patients with strongly positive cytotoxic cross-matches. These early graft losses were from the total of 12 cases in which livers were confronted with such cross-matches. The 60-day graft loss of 25% in the cross-match–positive cases versus 3.7% (4 of 108) in the cross-match–negative cases was significant (p < 0.05).

Causes of death. Eight (6.7%) of the 120 primary liver recipients died within 60 days for the reasons summarized in Table 4. There have been no deaths after 60 days. The 60-day mortality rate was significantly less than in the historical controls (p < 0.05). Two of the deaths were after emergency retransplantation. Sepsis caused 4 of the 8 deaths. However lethal sepsis occurred at a much reduced rate compared to the historical controls (p < 0.05).

The fatal intraoperative complication (Table 4) was caused by an unrecognized laceration of the subclavian artery in a 4-year-old child during anesthesia induction and placement of a central line. The patient was given only a partial first dose of FK 506 before developing an

![Table 4](image-url)

* There have been no deaths after 60 days in the FK 506 group. The continuing mortality in the historical controls is evident in Figure 1.

† Fulminant failure: failed to wake up.
acute hemothorax. Another child with fulminant hepatic failure did not wake up after the transplantation. Because of our policy of aggressive retransplantation, the incidence of death from hepatic failure was low in both the FK 506 and historical cases.

Liver function. One hundred twelve of the starting 120 primary liver recipients are alive, 7 after retransplantation (5 before 60 days and 2 after 60 days; Table 3). The function of the 105 grafts that have been in place continuously for 2 to 8.5 months is shown in Table 5. Only one patient with a recent biliary reconstruction has a bilirubin level more than 2 mg%. The serum glutamic oxaloacetic transaminase and alkaline phosphatase values are also normal or only slightly elevated in almost all cases.

The seven other patients who are alive after retransplantation also have generally good liver function, with only one exception.

Steroids, rejection, and adjuvant immunosuppression. Most FK 506 patients can be weaned from the prednisone rapidly during the first month (Figs. 3 and 4), leaving the FK 506 survivors on an average prednisone dose of only 6.6 mg/day at the end of this time compared to 16.7 mg in the historical controls (p < 0.05). Further steroid reductions were routinely made so that by 2 and 3 months the daily average doses were much less than 5 mg, significantly less than in the historical controls (Fig. 5). The appreciation of the inter-relationship between rejection and all modalities of immunosuppression during the first 30 days can be gained from Table 6. The absolute rate of clinical rejection was less (p < 0.01) in the FK 506-treated patients than in the historical controls, but only slightly less (NS) by histopathologic criteria. At the same time, the FK 506 patients were given only 43% of the steroid boluses used in the cyclosporine controls, 7% of the 5-day steroid recycles, 4% of the azathioprine, and 23% of the OKT3 courses.

TABLE 5. Present Metabolic Status of 105 Liver Recipients (87.5% of Original 120) Whose Primary Transplantations Were August 17, 1989 to February 4, 1990. Data from Seven Other Surviving Primary Recipients who Required Retransplantation Are Not Included (Mean ± SD).

<table>
<thead>
<tr>
<th>Measure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>105 Days survival</td>
<td>128 ± 46</td>
</tr>
<tr>
<td>*105 Bilirubin (mg%)</td>
<td>0.8 ± 1.3</td>
</tr>
<tr>
<td>105 SGOT (IU/L)</td>
<td>50.3 ± 57.1</td>
</tr>
<tr>
<td>†92 Alkaline phosphatase (IU/L)</td>
<td>153 ± 136</td>
</tr>
<tr>
<td>†92 Serum cholesterol (mg%)</td>
<td>160 ± 53</td>
</tr>
<tr>
<td>95 Uric acid (mg%)</td>
<td>6.9 ± 4.2</td>
</tr>
<tr>
<td>105 BUN (mg%)</td>
<td>24.5 ± 12.3</td>
</tr>
<tr>
<td>105 Creatinine (mg%)</td>
<td>1.4 ± 0.7</td>
</tr>
<tr>
<td>61 Magnesium (mg%)</td>
<td>1.3 ± 0.3</td>
</tr>
</tbody>
</table>

Normal values of: cholesterol: 130 to 240 mg% (age dependent); uric acid: <8.5 mg% males, <7 mg% females; magnesium: 1.8 to 2.4 mg%.

* Only one patient with recently repaired duct obstruction has a bilirubin ≥ 2 mg%.
† Adults only.
SGOT, serum glutamic oxaloacetic transaminase.
BUN, blood urea nitrogen.

FIG. 3. Benign convalescence after liver transplantation in a 28-year-old man. The biopsy at 12 days showed mild acute cellular rejection (ACR) for which no treatment was given. He is well after 7 months. Cr = serum creatinine. SGOT, serum glutamic oxaloacetic transaminase.

FIG. 4. Treatment of a liver rejection with a single 1-g bolus of hydrocortisone in a patient whose FK 506 was reduced temporarily because of a minor elevation of serum creatinine. After restoration of the FK 506 dose and a small increase in baseline steroids, normal function was restored. The patient is well after 7 months. ACR, acute cellular rejection. SGOT, serum glutamic oxaloacetic transaminase.
The simplified management made possible by FK 506 in most patients is seen in Figures 3 and 4. Rapid recovery, early discharge from the hospital, and steroid discontinuance were possible in more than one third of the cases (Fig. 3). The patient whose course is summarized in Figure 4 had a significant rejection that was easily reversed with a single steroid bolus and an increase of the FK 506 dose.

Other metabolic tests in FK 506 patients. Present average renal function in the 105 liver recipients-still bearing their original hepatic grafts is nearly normal (Table 5), as judged by serum creatinine and blood urea nitrogen. Current serum cholesterol, serum uric acid, and serum magnesium in the same patients are summarized in Table 5.

Infectious complications. The reduced incidence of fatal infections was documented in Table 4. However the patterns of nonlethal infectious disease were similar to other immunosuppressive regimens and included wound infections requiring treatment with antibiotics or surgical drainage, urinary tract infections, pneumonias, and fungal infections. The most common virus infection was cytomegalovirus. There were no protozoan infections.

Lymphoma. Polyclonal lymphoproliferative disease developed in two patients who had Epstein–Barr virus infections. A 19-year-old man had an infectious mononucleosis syndrome with enlargement of tonsils. After tracheostomy, tonsillectomy, reduction of the FK 506 dose, and treatment with acyclovir, he recovered and has no residual effects 5 months later. A 65-year-old woman with a PRA of 100% and a positive cytotoxic cross-match rejected both her primary and a second liver, despite additional therapy with high doses of prednisone, multiple courses of OKT3, and azathioprine. She died of sepsis 9 days after a third transplantation. The second graft contained a polyclonal lymphoma with no other foci.

Adverse reactions. Two of the 120 primary liver recipients developed transient expressive aphasia 6 and 11 days after transplantation. These cases have been reported in detail.7 Other major neurologic complications, such as convulsions and coma, were not seen. One patient who died of cerebral hemorrhage 4 days after operation had thrombocytopenia (platelet count 10,000). Minor neurotoxic symptoms such as tremors, paresthesias, increased sensitivity to light, insomnia, and mood changes were common and were helpful in guiding dose adjustments.4

Ten of the one-hundred twenty primary liver recipients developed new-onset diabetes requiring insulin. If only the 112 survivors are considered, the incidence was 8.9%. The incidence of new diabetes in kidney recipients treated with cyclosporine regimens has been reported to be 10% to 20%.8,9

There were no examples of hirsutism, gingival hyperplasia, or gynecomastia. A few patients noted thinning of the hair.

Liver Retransplantation

These 20 patients (15 adults and 5 children) had been under treatment that included cyclosporine and prednisone. Seventeen (85%) are alive with follow-ups of 2.3 to 9 months (Fig. 6). Two of the three patients who eventually

<table>
<thead>
<tr>
<th>TABLE 6. Other Immunosuppressive Agents and Rejection in Patients Within 30 Days After Liver Transplantation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rejection</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>Rejection</td>
</tr>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

* The pathology data were not obtained under comparable circumstances. All of the adult FK 506 patients had protocol biopsies at 2 weeks and 2 months, whereas the livers in the historical control cases were sampled irregularly. A valid comparison of histopathology will require a randomized trial and protocol biopsies in both limbs.

NS, not significant.
died of sepsis had a further attempt at retransplantation, in one patient twice, accounting for a total use of 23 grafts to treat these 20 recipients. The third death was in a child with perfect graft function who had a respiratory arrest on the ward, probably because the transplanted liver was too large for the body size.

The 17 patients who survived had more infections, a higher incidence of renal failure, and longer hospitalizations than did the patients in the primary series. However, liver graft function at 30 days and subsequently was equivalent to that in the primary transplantation series.

One of the survivors was a child who underwent pancreaticoduodenectomy because of pre-existing pancreatitis that became hemorrhagic after operation. Pre-existing hirsutism and gingival hyperplasia in patients who had been on chronic cyclosporine therapy reversed in 1 to 2 months.

Transplantation of Thoracic Organs

A detailed report of these cases is scheduled for presentation to the American Society of Transplant Surgeons in June 1990 and the International Transplantation Society in August 1990. The two double-lung and the heart-lung recipients are well after 130, 165, and 173 days, respectively, never having received maintenance steroid therapy. One of the double-lung recipients has been suspected to have bronchiolitis obliterans because of biopsy findings. Because he has no complaints or deterioration of pulmonary function, other maintenance immunosuppression has not been added to FK 506.

The 11 heart recipients also are well after a mean survival time of 104 ± 54 (SD) days (51 to 180 days). One adult was treated with OKT3 and started on azathioprine as a third maintenance drug after 3 months because of histopathologic evidence of rejection. An 11-year-old child was switched by his pediatric cardiologist from FK 506 to azathioprine after 3 months, probably with insufficient reason. Other potentially important information is summarized in Table 7. The patients have been unusually free of the hypertension that was common in the historical controls. Serum creatinine concentrations were approximately the same in both groups. The serum cholesterol levels are less than in the historical controls but not significantly so.

Kidney Transplantation

Current data on the 27 kidney recipients with functioning grafts are summarized in Table 8. The low steroid

![Diagram](image)

Fig. 6. Survival of patients whose previous grafts were lost under cyclosporine regimens and who underwent retransplantation with FK 506 treatment.

| TABLE 7. Parameters in Surviving Heart Transplantation Recipients |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | FK 506 | Cyclosporine |
| Days | 0 | 30 | 51-90 | 0 | 30 | 51-90 |
| n | 11 | 11 | 11 | 40 | 36 | 35 |
| Prednisone (mg/day) | — | 13.6 ± 7.2 | 10.7 ± 8.5 | — | 17.8 ± 4.7 | 18.0 ± 4.5 |
| Antihypertensive drugs | — | 0/11 | 1/11 | — | 11/36 | 19/35 |
| One | — | 0/11 | 0/11 | — | 2/36 | 1/35 |
| Two | — | 0/11 | 0/11 | — | 13/36 | 20/35 |
| Total | — | 0/11 | 1/11 (9%) | ❄ | ❄ | ❄ |
| Serum cholesterol (mg%) | 210 ± 52 | 220 ± 52 | 216 ± 41 | 245 ± 55 |
| Serum creatinine (mg%) | 1.1 ± 0.6 | 1.4 ± 0.8 | 1.0 ± 0.4 | 1.2 ± 0.5 |
TABLE 8. Present Metabolic Status of 27 Kidney Recipients Whose Primary Transplantations Were March 27, 1989 to January 4, 1990*

<table>
<thead>
<tr>
<th></th>
<th>Renal Recipients</th>
<th>Normal Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean number of days after transplant</td>
<td>156 ± 52</td>
<td></td>
</tr>
<tr>
<td>Creatinine (mg%)</td>
<td>1.75 ± 0.75</td>
<td>0.5–1.4</td>
</tr>
<tr>
<td>Blood urea nitrogen (mg%)</td>
<td>29.3 ± 13.8</td>
<td>5–20</td>
</tr>
<tr>
<td>Uric acid (mg%)</td>
<td>7.0 ± 2.3</td>
<td>2.5 ± 8.5</td>
</tr>
<tr>
<td>Magnesium (mg%)</td>
<td>1.5 ± 0.3</td>
<td>1.3 ± 2.1</td>
</tr>
<tr>
<td>Serum cholesterol (mg%)</td>
<td>176 ± 44</td>
<td>160–250</td>
</tr>
<tr>
<td>Patients on antihypertensives</td>
<td>11/28</td>
<td></td>
</tr>
<tr>
<td>Daily prednisone (mg)†</td>
<td>4.3 ± 6.2</td>
<td></td>
</tr>
</tbody>
</table>

* Details of all patients in this complex series are reported elsewhere.† Twenty of the 28 patients are receiving no steroids; four are on 5 mg/day.

Like cyclosporine, FK 506 also suppresses T-lymphocyte activation, adoptive immunity, and allogeneic (rejection) in vitro and in homotransplantation models. The drug can mitigate or prevent the rejection of heart, liver, kidney, pancreas, lung, intestine, and skin grafts in mice, rats, dogs, monkeys, baboons, and humans. The international exchange of this burgeoning information was facilitated by satellite symposia of the European Society of Organ Transplantation in 1987 and 1989. Clinical trials have been in progress in Pittsburgh since February 1989. The ultimate role of FK 506 in transplantation practice has not been fully delineated, but there are indications from our experience that it may be a large one.

Discussion

The accomplishments in transplantation during the last 30 years, and exponentially in the last decade, have exceeded expectations. Small steps, widely spaced in time, became large leaps with the advent of cyclosporine. Yet the nephrotoxicity and other side effects of this drug limited its value and stimulated a search for better agents. FK 506 was a product of this search. It was discovered in Japan by Kino et al. in 1984 during systematic screening for drugs with antimicrobial, antineoplastic, or immunosuppressive qualities.

FK 506 is a macrolide antibiotic (such as erythromycin) that is recovered from the fermentation broth of the soil fungus Streptomyces tsukubaensis. FK 506 has no structural similarity to cyclosporine, but it has in common the ability to inhibit the synthesis and expression of interleukin-2 and other cytokines, including gamma interferon. Like cyclosporine, FK 506 suppresses T-lymphocyte activation, adoptive immunity, and allogeneic

FIG. 7. Serum cholesterol comparison in recipients of different organ recipients.

FIG. 8. Dose and plasma level of FK 506 in different organs.
FK 506 was used first clinically to treat liver recipients whose convalescence was unsatisfactory under cyclosporine-containing regimens.1,2 However all of the transplantations in the present report were with FK 506 therapy from the outset.3 Because of the variety of the organ grafts, specific questions could be addressed about toxicity, dose requirements, and metabolic changes that might have been less accessible with only one kind of organ graft.

With both primary hepatic transplantation and retransplantation, there were high rates of graft and recipient survival. The patients treated were thought to be of the same level of difficulty if not greater than in our past experience. Extremely ill, old, or very young patients were represented in large numbers as well as those with hepatitis B virus infections, renal failure, previous portal-systemic shunts, and multiple upper-abdominal operations.

The improvement in results with FK 506 compared to historical liver transplantation controls began with a greatly reduced need for retransplantation. A distressing statistic in most liver transplantation centers has been a 10% to 20% incidence of primary graft nonfunction (usually dysfunction), which has been explained by undetected pre-existing donor disease, poorly performed procurement, inadequate preservation, or a flawed recipient operation.15 Despite the validity of these various explanations in some cases, there has been a surprising lack of correlation between recipient outcome; the use of so-called good, mediocre, and poor donors; or the surgeon’s perception of his or her technical performance.15 The low incidence of primary graft dysfunction and a reduced rate of hepatic artery thrombosis in the FK 506 patients may be indirect evidence that many early postoperative graft dysfunctions or thrombotic events are caused by immunologic factors that have not been recognized. In a few cases, there has been strong evidence that this can occur, despite a negative cytotoxic cross-match.16 In the present report, the cytotoxic cross-match was identified as a special but surmountable problem.

In addition to high survival rates after both primary liver grafting and retransplantation, the quality of liver function was generally good, reflecting excellent control of rejection. This was achieved with low steroid doses and with minimum need for the azathioprine or the ALG preparations that have been used in cyclosporine ‘cocktail’ regimens. There was a low incidence of nephrotoxicity in the primary recipients not previously exposed to cyclosporine and a somewhat greater incidence in the retransplantation series. The arterial hypertension that has been associated with cyclosporine therapy17 was very uncommon. Hirsutism and gingival hyperplasia were never seen in fresh cases and disappeared in retransplant recipients when they were switched from cyclosporine to FK 506.

The impression should not be left that FK 506 is free of nephrotoxicity. Nephrotoxicity is merely less than that of cyclosporine, and seemingly more reversible. Nephrotoxicity was uncommon in the liver recipients and was not used as a barometer to establish a dose ceiling. However, in our double-lung and heart–lung recipients in whom steroids and other immunosuppressive adjuncts were avoided, FK 506 was given to the limit imposed by elevations in the serum creatinine to more than 2 mg%.

These results have given a very favorable impression of FK 506. Whether comparisons with historical controls are valid or fair remains to be determined in future randomized trials because excessive immunosuppression, particularly with prednisone, may have been given in the recent control cases. Ten years ago, when cyclosporine was first used with steroids for liver transplantation, prednisone was used sparingly and discontinued early when possible. The results were comparable to those obtained at other centers in later years.18 By the late 1980s, a worldwide drift had occurred (including at our center) toward complicated multiple-drug management for all kinds of organ transplantation in an effort to minimize cyclosporine nephrotoxicity. Kahan19 has pointed out that there have never been well-designed randomized trials to test the legitimacy of this now widely accepted practice. Instead of reflecting better immunosuppression when cyclosporine was used with multiple other drugs, much of the improvement in global results after liver transplantation could be due instead to better preservation methods, acquisition of surgeon experience, improvements in infectious disease management, and more discriminating case selection by teams striving to establish credibility.

This last factor may be the most important of all in a competitive market place in which survival claims can make or break a program. How profoundly the seriousness of pre-existing disease and other risk factors, including age, can influence the outcome has been demonstrated precisely in patients with primary biliary cirrhosis.19

Whatever the merit of these reservations, the advantage of a simple FK 506-steroid management regimen appeared to be the same with other organs than the liver. For example, in the heart recipients, of whom all 11 are alive, neither permanent renal dysfunction nor serious hypertension have been observed during follow-ups of 2 to 6 months. Because cholesterol is thought to be up-regulated by cyclosporine,20 particular attention was paid to serum cholesterol levels in the FK 506-treated patients. Using FK 506, cholesterol levels have been reported to be low to normal in kidney recipients,4 and these were even lower in the liver, the lung, or heart–lung recipients in the present report (Fig. 7). However cholesterol lowering was not evident in the 11 heart recipients of the present report, possibly because they were being given more steroids than the other organ recipients. Alternatively hypercholesterolemic patients may have been over represented in the heart group of whom five of the 11 had
coronary artery disease. If the cholesterol-lowering qualities of FK 506 can be validated with more experience, cyclosporine-related hypertension and hyperlipidemia, two of the most serious present-day risk factors for coronary artery disease in heart, kidney, or liver recipients may be ameliorated.

FK 506 has additional metabolic effects. In addition to its immunologic and other qualities, which have been discussed, it is diabetogenic to the same extent as cyclosporine, augments hepatic regeneration, and can be neutrotoxic. It has become increasingly apparent that many, if not all, of the organ systems and physiologic end points affected by FK 506 are the same as for cyclosporine, although to differing degrees and sometimes in opposite directions. This was puzzling at first because FK 506 and cyclosporine have no structural similarities and have different cytosolic binding sites. However now it is suspected that the two drugs may act on an enzyme called cis-trans peptidyl-prolyl isomerase (PPIase), which is a principal constituent of the binding sites. PPIase, which was discovered in the pig kidney in 1984, is widely distributed in tissues from the lowest to the most developed species, including humans. Although PPIase was known to facilitate the biologically important process of catalysis of oligopeptide bonds and to facilitate protein folding, the physiologic significance of PPIase did not begin to come to light until its possible role in immune modulation was realized. We have speculated that the positive as well as adverse immunologic and other wide-ranging effects of FK 506 and cyclosporine result from alteration (probably inhibition) of the PPIase system in many tissues in ways that are not yet understood.

The influence of the route of administration on these diverse effects also is being clarified by observation of patients. Because orally administered FK 506 and cyclosporine are presented in high concentration to the liver, and largely metabolized there, it has been suggested that they might be more effective in protecting liver grafts from rejection than in protecting other organs, such as the heart and kidney, which are beyond this first pass filter. No conclusions are possible about this possibility. The liver recipients have been maintained on smaller average doses of FK 506 and with lower plasma levels than recipients of kidneys or thoracic organs. The average doses have drifted down in liver recipients largely in response to minor complaints of toxicity and because higher doses did not seem necessary for control of hepatic rejection. This may have reflected physician policy rather than any fundamental biologic difference. Alternatively the difference in FK 506 dosaging with the liver versus the nonhepatic transplantations might be because of subtle dysfunction of transplanted livers, which would not be a comparable factor of FK 506 drug disposition in heart or kidney recipients who usually have normal native livers.

References